DISA STIGS Viewer

RUCKUS ICX Router Security Technical Implementation Guide

Overview

Version Date Finding Count (81) Downloads
1 2025-06-03 CAT I (High): 6 CAT II (Medium): 53 CAT III (Low): 22 Excel JSON XML
Stig Description
This Security Technical Implementation Guide is published as a tool to improve the security of Department of Defense (DOD) information systems. The requirements are derived from the National Institute of Standards and Technology (NIST) 800-53 and related documents. Comments or proposed revisions to this document should be sent via email to the following address: disa.stig_spt@mail.mil.
Classified Public Sensitive  
I - Mission Critical Classified I - Mission Critical Public I - Mission Critical Sensitive II - Mission Critical Classified II - Mission Critical Public II - Mission Critical Sensitive III - Mission Critical Classified III - Mission Critical Public III - Mission Critical Sensitive

Findings - MAC II - Mission Critical Public

Finding ID Severity Title Description
V-273618 High The RUCKUS ICX perimeter router must be configured to restrict it from accepting outbound IP packets that contain an illegitimate address in the source address field via egress filter or by enabling Unicast Reverse Path Forwarding (uRPF). A compromised host in an enclave can be used by a malicious platform to launch cyberattacks on third parties. This is a common practice in "botnets", which are a collection of compromised computers using malware to attack other computers or networks. Distributed denial-of-service (DDoS) attacks frequently leverage IP source address...
V-273611 High The RUCKUS ICX PE router must be configured to block any traffic destined to IP core infrastructure. IP/MPLS networks providing VPN and transit services must provide, at the least, the same level of protection against denial-of-service (DoS) attacks and intrusions as layer 2 networks. Although the IP core network elements are hidden, security should never rely entirely on obscurity. IP addresses can be guessed. Core network elements...
V-273605 High The RUCKUS ICX router must be configured to restrict traffic destined to itself. The route processor handles traffic destined to the router, the key component used to build forwarding paths, and is instrumental with all network management functions. Hence, any disruption or denial-of-service (DoS) attack to the route processor can result in mission critical network outages.
V-273604 High The RUCKUS ICX perimeter router must be configured to deny network traffic by default and allow network traffic by exception. A deny-all, permit-by-exception network communications traffic policy ensures that only connections that are essential and approved are allowed. This requirement applies to both inbound and outbound network communications traffic. All inbound and outbound traffic must be denied by default. Firewalls and perimeter routers should only allow traffic through that is...
V-273586 High The RUCKUS ICX perimeter router must be configured to not be a Border Gateway Protocol (BGP) peer to an alternate gateway service provider. ISPs use BGP to share route information with other autonomous systems (i.e., other ISPs and corporate networks). If the perimeter router was configured to BGP peer with an ISP, NIPRNet routes could be advertised to the ISP, thereby creating a backdoor connection from the internet to the NIPRNet.
V-273585 High The RUCKUS ICX perimeter router must be configured to protect an enclave connected to an alternate gateway by using an inbound filter that only permits packets with destination addresses within the site's address space. Enclaves with alternate gateway connections must take additional steps to ensure there is no compromise on the enclave network or NIPRNet. Without verifying the destination address of traffic coming from the site's alternate gateway, the perimeter router could be routing transit data from the internet into the NIPRNet. This could...
V-273671 Medium The RUCKUS ICX router must establish organization-defined alternate communications paths for system operations organizational command and control. An incident, whether adversarial- or nonadversarial-based, can disrupt established communications paths used for system operations and organizational command and control. Alternate communications paths reduce the risk of all communications paths being affected by the same incident. To compound the problem, the inability of organizational officials to obtain timely information about...
V-273670 Medium The RUCKUS ICX router must implement physically or logically separate subnetworks to isolate organization-defined critical system components and functions. Separating critical system components and functions from other noncritical system components and functions through separate subnetworks may be necessary to reduce susceptibility to a catastrophic or debilitating breach or compromise that results in system failure. For example, physically separating the command and control function from the in-flight entertainment function through...
V-273669 Medium The RUCKUS ICX router must employ organization-defined controls by type of denial of service (DoS) to achieve the DoS objective. DoS events may occur due to a variety of internal and external causes, such as an attack by an adversary or a lack of planning to support organizational needs with respect to capacity and bandwidth. Such attacks can occur across a wide range of network protocols (e.g., IPv4, IPv6). A...
V-273667 Medium The RUCKUS ICX Router must be configured to suppress Router Advertisements on all external IPv6-enabled interfaces. Many of the known attacks in stateless autoconfiguration are defined in RFC 3756 were present in IPv4 ARP attacks. To mitigate these vulnerabilities, links that have no hosts connected such as the interface connecting to external gateways must be configured to suppress router advertisements.
V-273666 Medium The RUCKUS ICX Router must not be configured to use IPv6 Site Local Unicast addresses. As currently defined, site local addresses are ambiguous and can be present in multiple sites. The address itself does not contain any indication of the site to which it belongs. The use of site-local addresses has the potential to adversely affect network security through leaks, ambiguity, and potential misrouting as...
V-273660 Medium The RUCKUS ICX Router must be configured to have each VRF with the appropriate Route Distinguisher (RD). An RD provides uniqueness to the customer address spaces within the MPLS L3VPN infrastructure. The concept of the VPN-IPv4 and VPN-IPv6 address families consists of the RD prepended before the IP address. Hence, if the same IP prefix is used in several different L3VPNs, it is possible for BGP to...
V-273652 Medium The RUCKUS ICX perimeter router must be configured to drop IPv6 packets containing a hop-by-hop and destination options header with invalid or undefined option type values. These options are intended for the destination options header only. The optional and extensible natures of the IPv6 extension headers require higher scrutiny because many implementations do not always drop packets with headers that cannot be recognized. This could cause a denial of service on the target device. In addition,...
V-273651 Medium The RUCKUS ICX perimeter router must be configured drop IPv6 packets with a Routing Header type 0, 1, or 3-255. The routing header can be used maliciously to send a packet through a path where less robust security is in place, rather than through the presumably preferred path of routing protocols. Use of the routing extension header has few legitimate uses other than as implemented by Mobile IPv6. The Type...
V-273650 Medium The RUCKUS ICX perimeter router must be configured to drop IPv6 undetermined transport packets. One of the fragmentation weaknesses known in IPv6 is the undetermined transport packet. This packet contains an undetermined protocol due to fragmentation. Depending on the length of the IPv6 extension header chain, the initial fragment may not contain the layer four port information of the packet.
V-273648 Medium The RUCKUS ICX multicast Designated Router (DR) must be configured to filter the Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Report messages to allow hosts to join a multicast group only from sources that have been approved by the organization. Real-time multicast traffic can entail multiple large flows of data. Large unicast flows tend to be fairly isolated (i.e., someone doing a file download here or there), whereas multicast can have broader impact on bandwidth consumption, resulting in extreme network congestion. Hence, it is imperative that there is multicast admission...
V-273646 Medium The RUCKUS ICX perimeter router must be configured to block all outbound management traffic. For in-band management, the management network must have its own subnet to enforce control and access boundaries provided by layer 3 network nodes, such as routers and firewalls. Management traffic between the managed network elements and the management network is routed via the same links and nodes as that used...
V-273645 Medium The RUCKUS ICX perimeter router must be configured to have Proxy ARP disabled on all external interfaces. When Proxy ARP is enabled on a Cisco router, it allows that router to extend the network (at layer 2) across multiple interfaces (LAN segments). Because proxy ARP allows hosts from different LAN segments to look like they are on the same segment, proxy ARP is only safe when used...
V-273643 Medium The RUCKUS ICX perimeter router must be configured to block inbound packets with source Bogon IP address prefixes. Bogons include IP packets on the public internet that contain addresses that are not in any range allocated or delegated by the Internet Assigned Numbers Authority (IANA) or a delegated regional internet registry (RIR) and allowed for public Internet use. Bogons also include multicast, IETF reserved, and special purpose address...
V-273642 Medium The RUCKUS ICX perimeter router must be configured to only allow incoming communications from authorized sources to be routed to authorized destinations. Unrestricted traffic may contain malicious traffic that poses a threat to an enclave or to other connected networks. Additionally, unrestricted traffic may transit a network, which uses bandwidth and other resources. Traffic can be restricted directly by an access control list (ACL), which is a firewall function, or by Policy...
V-273640 Medium The RUCKUS ICX multicast Designated Router (DR) must be configured to increase the shortest-path tree (SPT) threshold or set it to infinity to minimalize source-group (S, G) state within the multicast topology where Any Source Multicast (ASM) is deployed. ASM can have many sources for the same groups (many-to-many). For many receivers, the path via the RP may not be ideal compared with the shortest path from the source to the receiver. By default, the last-hop router will initiate a switch from the shared tree to a source-specific SPT...
V-273639 Medium The RUCKUS ICX Router must be configured to limit the number of mroute states resulting from Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Host Membership Reports. The current multicast paradigm can let any host join any multicast group at any time by sending an IGMP or MLD membership report to the DR. In a Protocol Independent Multicast (PIM) Sparse Mode network, the DR will send a PIM Join message for the group to the RP. Without...
V-273638 Medium The RUCKUS ICX multicast Rendezvous Pointerface (RP) must be configured to rate limit the number of Protocol Independent Multicast (PIM) Register messages. When a new source starts transmitting in a PIM Sparse Mode network, the DR will encapsulate the multicast packets into register messages and forward them to the RP using unicast. This process can be taxing on the CPU for both the DR and the RP if the source is running...
V-273634 Medium The RUCKUS ICX BGP router must be configured to use the maximum prefixes feature to protect against route table flooding and prefix de-aggregation attacks. The effects of prefix de-aggregation can degrade router performance due to the size of routing tables and also result in black-holing legitimate traffic. Initiated by an attacker or a misconfigured router, prefix de-aggregation occurs when the announcement of a large prefix is fragmented into a collection of smaller prefix announcements....
V-273633 Medium The RUCKUS ICX router must be configured to have Internet Control Message Protocol (ICMP) redirects disabled on all external interfaces. The ICMP supports IP traffic by relaying information about paths, routes, and network conditions. Routers automatically send ICMP messages under a wide variety of conditions. Redirect ICMP messages are commonly used by attackers for network mapping and diagnosis.
V-273632 Medium The RUCKUS ICX router must be configured to have Internet Control Message Protocol (ICMP) mask replies disabled on all external interfaces. The ICMP supports IP traffic by relaying information about paths, routes, and network conditions. Routers automatically send ICMP messages under a wide variety of conditions. Mask Reply ICMP messages are commonly used by attackers for network mapping and diagnosis.
V-273631 Medium The RUCKUS ICX router must be configured to have Internet Control Message Protocol (ICMP) unreachable notifications disabled on all external interfaces. The ICMP supports IP traffic by relaying information about paths, routes, and network conditions. Routers automatically send ICMP messages under a wide variety of conditions. Host unreachable ICMP messages are commonly used by attackers for network mapping and diagnosis.
V-273629 Medium The RUCKUS ICX router must be configured to have Gratuitous Address Resolution Protocol (ARP) disabled on all external interfaces. A gratuitous ARP is an ARP broadcast in which the source and destination MAC addresses are the same. It is used to inform the network about a host IP address. A spoofed gratuitous ARP message can cause network mapping information to be stored incorrectly, causing network malfunction.
V-273628 Medium The RUCKUS ICX router must be configured to protect against or limit the effects of denial-of-service (DoS) attacks by employing control plane protection. The Route Processor (RP) is critical to all network operations because it is the component used to build all forwarding paths for the data plane via control plane processes. It is also instrumental with ongoing network management functions that keep the routers and links available for providing network services. Any...
V-273627 Medium The RUCKUS ICX Router must not be configured to have any zero-touch deployment feature enabled when connected to an operational network. Network devices configured via a zero-touch deployment or auto-loading feature can have their startup configuration or image pushed to the device for installation via TFTP or Remote Copy (rcp). Loading an image or configuration file from the network is taking a security risk because the file could be intercepted by...
V-273626 Medium The RUCKUS Multicast Source Discovery Protocol (MSDP) router must be configured to authenticate all received MSDP packets. MSDP peering with customer network routers presents additional risks to the core, whether from a rogue or misconfigured MSDP-enabled router. MSDP password authentication is used to validate each segment sent on the TCP connection between MSDP peers, protecting the MSDP session against the threat of spoofed packets being injected into...
V-273623 Medium The RUCKUS ICX router must be configured to use keys with a duration not exceeding 180 days for authenticating routing protocol messages. If the keys used for routing protocol authentication are guessed, the malicious user could create havoc within the network by advertising incorrect routes and redirecting traffic. Some routing protocols allow the use of key chains for authentication. A key chain is a set of keys used in succession, with each...
V-273622 Medium The RUCKUS ICX BGP router must be configured to use a unique key for each autonomous system (AS) that it peers with. If the same keys are used between eBGP neighbors, the chance of a hacker compromising any of the BGP sessions increases. It is possible that a malicious user exists in one autonomous system who would know the key used for the eBGP session. This user would then be able to...
V-273621 Medium The RUCKUS ICX router must be configured to implement message authentication for all control plane protocols. A rogue router could send a fictitious routing update to convince a site's perimeter router to send traffic to an incorrect or even a rogue destination. This diverted traffic could be analyzed to learn confidential information about the site's network or used to disrupt the network's ability to communicate with...
V-273620 Medium The RUCKUS ICX PE router must be configured to ignore or block all packets with any IP options. Packets with IP options are not fast switched and therefore must be punted to the router processor. Hackers who initiate denial-of-service (DoS) attacks on routers commonly send large streams of packets with IP options. Dropping the packets with IP options reduces the load of IP options packets on the router....
V-273619 Medium The RUCKUS ICX perimeter router must be configured to block all packets with any IP options. Packets with IP options are not fast switched and henceforth must be punted to the router processor. Hackers who initiate denial-of-service (DoS) attacks on routers commonly send large streams of packets with IP options. Dropping the packets with IP options reduces the load of IP options packets on the router....
V-273616 Medium The RUCKUS ICX router must be configured to only permit management traffic that ingresses and egresses the OOBM interface. The OOBM access switch will connect to the management interface of the managed network elements. The management interface can be a true OOBM interface or a standard interface functioning as the management interface. In either case, the management interface of the managed network element will be directly connected to the...
V-273615 Medium The RUCKUS ICX out-of-band management (OOBM) gateway router must be configured to block any traffic destined to itself that is not sourced from the OOBM network or the Network Operations Center (NOC). If the gateway router is not a dedicated device for the OOBM network, several safeguards must be implemented for containment of management and production traffic boundaries. It is imperative that hosts from the managed network are not able to access the OOBM gateway router.
V-273614 Medium The RUCKUS ICX out-of-band management (OOBM) gateway router must be configured to forward only authorized management traffic to the Network Operations Center (NOC).
V-273613 Medium The RUCKUS ICX management network gateway must be configured to transport management traffic to the Network Operations Center (NOC) via dedicated circuit. When the production network is managed in-band or out-of-band (OOBM), the management network could be housed at a NOC that is located remotely at single or multiple interconnected sites. NOC interconnectivity, as well as connectivity between the NOC and the managed network, must be enabled using IPsec tunnels or dedicated...
V-273612 Medium The RUCKUS ICX PE router must be configured with Unicast Reverse Path Forwarding (uRPF) loose mode enabled on all CE-facing interfaces. The uRPF feature is a defense against spoofing and denial-of-service (DoS) attacks by verifying if the source address of any ingress packet is reachable. To mitigate attacks that rely on forged source addresses, all provider edge routers must enable uRPF loose mode to guarantee that all packets received from a...
V-273610 Medium The RUCKUS ICX BGP router must be configured to reject outbound route advertisements for any prefixes belonging to the IP core. Outbound route advertisements belonging to the core can result in traffic either looping or being black holed, or at a minimum, using a nonoptimized path.
V-273609 Medium The RUCKUS ICX perimeter router must be configured to filter egress traffic at the internal interface on an inbound direction. Access lists are used to separate data traffic into that which it will route (permitted packets) and that which it will not route (denied packets). Secure configuration of routers makes use of access lists for restricting access to services on the router itself as well as for filtering traffic passing...
V-273608 Medium The RUCKUS ICX perimeter router must be configured to filter ingress traffic at the external interface on an inbound direction. Access lists are used to separate data traffic into that which it will route (permitted packets) and that which it will not route (denied packets). Secure configuration of routers makes use of access lists for restricting access to services on the router itself as well as for filtering traffic passing...
V-273607 Medium The RUCKUS ICX perimeter router must be configured to filter traffic destined to the enclave in accordance with the guidelines contained in DOD Instruction 8551.1. Vulnerability assessments must be reviewed by the system administrator, and protocols must be approved by the information assurance (IA) staff before entering the enclave. Access control lists (ACLs) are the first line of defense in a layered security approach. They permit authorized packets and deny unauthorized packets based on port...
V-273606 Medium The RUCKUS ICX router must be configured to drop all fragmented Internet Control Message Protocol (ICMP) packets destined to itself. Fragmented ICMP packets can be generated by hackers for denial-of-service (DoS) attacks such as Ping O' Death and Teardrop. It is imperative that all fragmented ICMP packets are dropped.
V-273601 Medium The RUCKUS ICX PE router must be configured to enforce a Quality-of-Service (QoS) policy to limit the effects of packet flooding denial-of-service (DoS) attacks. DoS is a condition when a resource is not available for legitimate users. Packet flooding distributed denial-of-service (DDoS) attacks are referred to as volumetric attacks and have the objective of overloading a network or circuit to deny or seriously degrade performance, which denies access to the services that normally traverse...
V-273597 Medium The RUCKUS ICX router must be configured to authenticate all routing protocol messages using NIST-validated FIPS 198-1 message authentication code algorithm. A rogue router could send a fictitious routing update to convince a site's perimeter router to send traffic to an incorrect or even a rogue destination. This diverted traffic could be analyzed to learn confidential information about the site's network or used to disrupt the network's ability to communicate with...
V-273596 Medium The RUCKUS ICX router must not be configured to have any feature enabled that calls home to the vendor. Call home services will routinely send data such as configuration and diagnostic information to the vendor for routine or emergency analysis and troubleshooting. There is a risk that transmission of sensitive data sent to unauthorized persons could result in data loss or downtime due to an attack.
V-273589 Medium The RUCKUS ICX out-of-band management (OOBM) gateway router must be configured to not redistribute routes between the management network routing domain and the managed network routing domain. If the gateway router is not a dedicated device for the OOBM network, several safeguards must be implemented for containment of management and production traffic boundaries; otherwise, it is possible that management traffic will not be separated from production traffic. Since the managed network and the management network are separate...
V-273588 Medium The RUCKUS ICX out-of-band management (OOBM) gateway router must be configured to have separate Interior Gateway Protocol (IGP) instances for the managed network and management network. If the gateway router is not a dedicated device for the OOBM network, implementation of several safeguards for containment of management and production traffic boundaries must occur. Since the managed and management network are separate routing domains, configuration of separate IGP routing instances is critical on the router to segregate...
V-273582 Medium The RUCKUS ICX multicast router must be configured to bind a Protocol Independent Multicast (PIM) neighbor filter to interfaces that have PIM enabled. PIM is a routing protocol used to build multicast distribution trees for forwarding multicast traffic across the network infrastructure. PIM traffic must be limited to only known PIM neighbors by configuring and binding a PIM neighbor filter to those interfaces that have PIM enabled. If a PIM neighbor filter is...
V-273581 Medium The RUCKUS ICX multicast router must be configured to disable Protocol Independent Multicast (PIM) on all interfaces that are not required to support multicast routing. If multicast traffic is forwarded beyond the intended boundary, it is possible that it can be intercepted by unauthorized or unintended personnel. Limiting where, within the network, a given multicast group's data is permitted to flow is an important first step in improving multicast security. A scope zone is an...
V-273580 Medium The RUCKUS ICX perimeter router must be configured to enforce approved authorizations for controlling the flow of information between interconnected networks in accordance with applicable policy. Information flow control regulates authorized information to travel within a network and between interconnected networks. Controlling the flow of network traffic is critical so it does not introduce any unacceptable risk to the network infrastructure or data. An example of a flow control restriction is blocking outside traffic claiming to...
V-273573 Medium The RUCKUS ICX BGP router must be configured to reject outbound route advertisements for any prefixes that do not belong to any customer or the local autonomous system (AS). Advertisement of routes by an autonomous system for networks that do not belong to any of its customers pulls traffic away from the authorized network. This causes a denial of service (DoS) on the network that allocated the block of addresses and may cause a DoS on the network that...
V-273572 Medium The RUCKUS ICX BGP router must be configured to reject inbound route advertisements from a customer edge (CE) router for prefixes that are not allocated to that customer. As a best practice, a service provider should only accept customer prefixes that have been assigned to that customer and any peering autonomous systems. A multi-homed customer with BGP speaking routers connected to the internet or other external networks could be breached and used to launch a prefix de-aggregation attack....
V-273571 Medium The RUCKUS ICX BGP router must be configured to reject inbound route advertisements for any prefixes belonging to the local autonomous system (AS). Accepting route advertisements belonging to the local AS can result in traffic looping or being black holed, or at a minimum using a nonoptimized path.
V-273570 Medium The RUCKUS ICX BGP router must be configured to reject inbound route advertisements for any Bogon prefixes. Accepting route advertisements for Bogon prefixes can result in the local autonomous system (AS) becoming a transit for malicious traffic as it will in turn advertise these prefixes to neighbor autonomous systems.
V-273569 Medium The RUCKUS ICX router must be configured to enforce approved authorizations for controlling the flow of information within the network based on organization-defined information flow control policies. Information flow control regulates where information is allowed to travel within a network and between interconnected networks. The flow of all network traffic must be monitored and controlled so it does not introduce any unacceptable risk to the network infrastructure or data. Information flow control policies and enforcement mechanisms are...
V-273665 Low The RUCKUS ICX Router must be configured to advertise a hop limit of at least 32 in Router Advertisement messages for IPv6 stateless autoconfiguration deployments. The Neighbor Discovery protocol allows a hop limit value to be advertised by routers in a Router Advertisement message being used by hosts instead of the standardized default value. If a very small value was configured and advertised to hosts on the LAN segment, communications would fail due to the...
V-273664 Low The RUCKUS ICX Multicast Source Discovery Protocol (MSDP) Router must be configured to use its loopback address when originating MSDP traffic. Using a loopback address as the source address offers a multitude of uses for security, access, management, and scalability of MSDP routers. It is easier to construct appropriate ingress filters for router management plane traffic destined to the network management subnet since the source addresses will be from the range...
V-273654 Low The RUCKUS ICX BGP Router must be configured to use its loopback address as the source address for internal border gateway protocol (iBGP) peering sessions. Using a loopback address as the source address offers a multitude of uses for security, access, management, and scalability of the BGP routers. It is easier to construct appropriate ingress filters for router management plane traffic destined to the network management subnet since the source addresses will be from the...
V-273647 Low The RUCKUS ICX multicast Designated Router (DR) must be configured to filter the Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Report messages to allow hosts to join only multicast groups that have been approved by the organization. Real-time multicast traffic can entail multiple large flows of data. Large unicast flows tend to be fairly isolated (i.e., someone doing a file download here or there), whereas multicast can have broader impact on bandwidth consumption, resulting in extreme network congestion. Hence, it is imperative that there is multicast admission...
V-273644 Low The RUCKUS ICX perimeter router must be configured to have Link Layer Discovery Protocols (LLDPs) disabled on all external interfaces. LLDPs are primarily used to obtain protocol addresses of neighboring devices and discover platform capabilities of those devices. Use of SNMP with the LLDP Management Information Base (MIB) allows network management applications to learn the device type and the SNMP agent address of neighboring devices, thereby enabling the application to...
V-273641 Low The RUCKUS ICX BGP router must be configured to enable the Generalized TTL Security Mechanism (GTSM). GTSM is designed to protect a router's IP-based control plane from denial-of-service (DoS) attacks. Many attacks focused on CPU load and line-card overload can be prevented by implementing GTSM on all Exterior Border Gateway Protocol speaking routers. GTSM is based on the fact that the vast majority of control plane...
V-273637 Low The RUCKUS ICX multicast Rendezvous Pointerface (RP) Router must be configured to limit the multicast forwarding cache so that its resources are not saturated by managing an overwhelming number of Protocol Independent Multicast (PIM) and Multicast Source Discovery Protocol (MSDP) source-active entries. MSDP peering between networks enables sharing of multicast source information. Enclaves with an existing multicast topology using PIM-SM can configure their RP routers to peer with MSDP routers. As a first step of defense against a denial-of-service (DoS) attack, all RP routers must limit the multicast forwarding cache to ensure...
V-273635 Low The RUCKUS ICX BGP router must be configured to limit the prefix size on any inbound route advertisement to /24 or the least significant prefixes issued to the customer. The effects of prefix de-aggregation can degrade router performance due to the size of routing tables and also result in black-holing legitimate traffic. Initiated by an attacker or a misconfigured router, prefix de-aggregation occurs when the announcement of a large prefix is fragmented into a collection of smaller prefix announcements.
V-273630 Low The RUCKUS ICX router must be configured to have IP directed broadcast disabled on all interfaces. An IP directed broadcast is a datagram sent to the broadcast address of a subnet that is not directly attached to the sending machine. The directed broadcast is routed through the network as a unicast packet until it arrives at the target subnet, where it is converted into a link-layer...
V-273603 Low The RUCKUS ICX P router must be configured to enforce a Quality-of-Service (QoS) policy in accordance with the QoS GIG Technical Profile. Different applications have unique requirements and toleration levels for delay, jitter, bandwidth, packet loss, and availability. To manage the multitude of applications and services, a network requires a QoS framework to differentiate traffic and provide a method to manage network congestion. The Differentiated Services Model (DiffServ) is based on per-hop...
V-273602 Low The RUCKUS ICX PE router must be configured to enforce a Quality-of-Service (QoS) policy in accordance with the QoS DODIN Technical Profile. Different applications have unique requirements and toleration levels for delay, jitter, bandwidth, packet loss, and availability. To manage the multitude of applications and services, a network requires a QoS framework to differentiate traffic and provide a method to manage network congestion. The Differentiated Services Model (DiffServ) is based on per-hop...
V-273594 Low The RUCKUS ICX router must be configured to log all packets that have been dropped. Auditing and logging are key components of any security architecture. It is essential for security personnel to know what is being done or attempted to be done, and by whom, to compile an accurate risk assessment. Auditing the actions on network devices provides a means to recreate an attack or...
V-273591 Low The RUCKUS ICX multicast Rendezvous Pointerface (RP) router must be configured to filter Protocol Independent Multicast (PIM) Join messages received from the Designated Router (DR) for any undesirable multicast groups. Real-time multicast traffic can entail multiple large flows of data. An attacker can flood a network segment with multicast packets, over-using the available bandwidth and thereby creating a denial-of-service (DoS) condition. Hence, it is imperative that join messages are only accepted for authorized multicast groups.
V-273590 Low The RUCKUS ICX multicast Rendezvous Pointerface (RP) router must be configured to filter Protocol Independent Multicast (PIM) Register messages received from the Designated Router (DR) for any undesirable multicast groups and sources. Real-time multicast traffic can entail multiple large flows of data. An attacker can flood a network segment with multicast packets, over-using the available bandwidth and thereby creating a denial-of-service (DoS) condition. Hence, it is imperative that register messages are accepted only for authorized multicast groups and sources.
V-273587 Low The RUCKUS ICX perimeter router must be configured to not redistribute static routes to an alternate gateway service provider into BGP or an IGP peering with the NIPRNet or to other autonomous systems. If the static routes to the alternate gateway are being redistributed into an Exterior Gateway Protocol or Interior Gateway Protocol to a NIPRNet gateway, this could make traffic on NIPRNet flow to that particular router and not to the Internet Access Pointerface routers. This could not only wreak havoc with...
V-273584 Low The RUCKUS ICX router must be configured to have all inactive interfaces disabled. An inactive interface is rarely monitored or controlled and may expose a network to an undetected attack on that interface. Unauthorized personnel with access to the communication facility could gain access to a router by connecting to a configured interface that is not in use. If an interface is no...
V-273583 Low The RUCKUS ICX multicast edge router must be configured to establish boundaries for administratively scoped multicast traffic. If multicast traffic is forwarded beyond the intended boundary, it is possible that it can be intercepted by unauthorized or unintended personnel. Administrative scoped multicast addresses are locally assigned and are to be used exclusively by the enterprise network or enclave. Administrative scoped multicast traffic must not cross the enclave...
V-273578 Low The RUCKUS ICX BGP router must be configured to reject route advertisements from CE routers with an originating AS in the AS_PATH attribute that does not belong to that customer. Verifying the path a route has traversed will ensure the local AS is not used as a transit network for unauthorized traffic. To ensure that the local AS does not carry any prefixes that do not belong to any customers, all PE routers must be configured to reject routes with...
V-273577 Low The RUCKUS ICX MSDP router must be configured to limit the amount of source-active messages it accepts on a per peer basis. To reduce any risk of a denial-of-service (DoS) attack from a rogue or misconfigured MSDP router, the router must be configured to limit the number of source-active messages it accepts from each peer.
V-273576 Low The RUCKUS ICX Multicast Source Discovery Protocol router must be configured to filter source-active multicast advertisements to external MSDP peers to avoid global visibility of local-only multicast sources and groups. To avoid global visibility of local information, there are a number of source-group (S, G) states in a PIM-SM domain that must not be leaked to another domain, such as multicast sources with private address, administratively scoped multicast addresses, and the auto-RP groups (224.0.1.39 and 224.0.1.40). Allowing a multicast distribution...
V-273575 Low The RUCKUS ICX Multicast Source Discovery Protocol router must be configured to filter received source-active multicast advertisements for any undesirable multicast groups and sources. The interoperability of BGP extensions for interdomain multicast routing and MSDP enables seamless connectivity of multicast domains between autonomous systems. MP-BGP advertises the unicast prefixes of the multicast sources used by Protocol Independent Multicast (PIM) routers to perform RPF checks and build multicast distribution trees. MSDP is a mechanism used...
V-273574 Low The RUCKUS ICX BGP router must be configured to reject route advertisements from BGP peers that do not list their autonomous system (AS) number as the first AS in the AS_PATH attribute. Verifying the path a route has traversed will ensure the IP core is not used as a transit network for unauthorized or possibly even internet traffic. All autonomous system boundary routers (ASBRs) must ensure updates received from eBGP peers list their AS number as the first AS in the AS_PATH...